4,774 research outputs found

    Delivery of Functionality in Complex Food Systems: Physically Inspired Approaches from Nanoscale to Microscale, Wageningen 18-21 October 2009

    Get PDF
    The Wageningen Delivery of Functionality symposium covered all aspects involved with food structural design to arrive at high-quality foods which meet demanding customer expectations and regulatory requirements. The symposium integrated aspects from the structural organization of foods at molecular and supramolecular scales to dedicated techniques required to describe and visualize such structures, the gastro-intestinal events and how to model these in a laboratory setting, and finally the impact those food structures and ingredients have on the consumer’s physiology and on the human perception. As an interdisciplinary platform, bringing together more than 160 researchers from academia and industry, the symposium meanwhile fulfills an important role in the food science communit

    The utility of NBS profiling for plant systematics: a first study in tuber-bearing Solanum species

    Get PDF
    Systematic relationships are important criteria for researchers and breeders to select materials. We evaluated a novel molecular technique, nucleotide binding site (NBS) profiling, for its potential in phylogeny reconstruction. NBS profiling produces multiple markers in resistance genes and their analogs (RGAs). Potato (Solanum tuberosum L.) is a crop with a large secondary genepool, which contains many important traits that can be exploited in breeding programs. In this study we used a set of over 100 genebank accessions, representing 49 tuber-bearing wild and cultivated Solanum species. NBS profiling was compared to amplified fragment length polymorphism (AFLP). Cladistic and phenetic analyses showed that the two techniques had similar resolving power and delivered trees with a similar topology. However, the different statistical tests used to demonstrate congruency of the trees were inconclusive. Visual inspection of the trees showed that, especially at the lower level, many accessions grouped together in the same way in both trees; at the higher level, when looking at the more basal nodes, only a few groups were well supported. Again this was similar for both techniques. The observation that higher level groups were poorly supported might be due to the nature of the material and the way the species evolved. The similarity of the NBS and AFLP results indicate that the role of disease resistance in speciation is limite

    Open Letter To Russia

    Get PDF

    Unstable coronal loops : numerical simulations with predicted observational signatures

    Get PDF
    We present numerical studies of the nonlinear, resistive magnetohydrodynamic (MHD) evolution of coronal loops. For these simulations we assume that the loops carry no net current, as might be expected if the loop had evolved due to vortex flows. Furthermore the initial equilibrium is taken to be a cylindrical flux tube with line-tied ends. For a given amount of twist in the magnetic field it is well known that once such a loop exceeds a critical length it becomes unstableto ideal MHD instabilities. The early evolution of these instabilities generates large current concentrations. Firstly we show that these current concentrations are consistent with the formation of a current sheet. Magnetic reconnection can only occur in the vicinity of these current concentrations and we therefore couple the resistivity to the local current density. This has the advantage of avoiding resistive diffusion in regions where it should be negligible. We demonstrate the importance of this procedure by comparison with simulations based on a uniform resistivity. From our numerical experiments we are able to estimate some observational signatures for unstable coronal loops. These signatures include: the timescale of the loop brightening; the temperature increase; the energy released and the predicted observable flow speeds. Finally we discuss to what extent these observational signatures are consistent with the properties of transient brightening loops.Comment: 13 pages, 9 figure

    A New Method to Determine Tooth Positions and Dental Arch Dimensions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66726/2/10.1177_00220345720510042301.pd

    The application of strongly oxidizing agents in flow injection analysis : Part 4. Manganese(VI) and Copper(III)

    Get PDF
    The application of manganese(VI) and copper(III) in strongly alkaline solutions as strong oxidizing reagents in flow injection analysis is described. Both reagents were prepared under batch conditions and fed to the flow from a stock solution. The reactions of most analytes tested with manganese(VI) required the use of a heated (65° C) reaction coil. The main application appears to be for the determination of monosaccharides in the 10−4–10−5 mol l−1 range

    Iridium oxide as actuator material for the ISFET-based sensor-actuator system

    Get PDF
    Acid or base concentrations can be determined by performing an acid-base titration with Coulometrically generated OH- or H+ ions at a noble-metal actuator electrode in close proximity to the pH-sensitive gate of an ISFET. The ISFET is used as the indicator electrode to detect the equivalence point in the titration curve. The potential of the actuator electrode during the generation of the titrant is relatively high for the anodic water electrolysis (or relatively low for the cathodic reaction). Consequently other redox couples which are possibly present in the sample solution can interfere with the water electrolysis. This reduces the efficiency of the current to titrant generation on which this measurement relies. To overcome this problem, iridium oxide has been used as a new electroactive material for the actuator electrode. The reversible redox reaction in this metal oxide occurs at a favourable potential and is attended by the exclusive uptake or release of protons, making a titration possible. It is shown that a Coulometric titration in the presence of Cl¿ ions, formerly not possible with the noble-metal actuator electrode because of the redox interference, can now successfully be carried out with iridium oxide as the actuator material. Calculations show that the ISFET pH-sensor is well suited to determining accurately the equivalence point in the steep part of the titration curve, because of its short response time

    Quality Control of Digitized Data and Inclusion of Essential and Meaningful Checkpoints

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68191/2/10.1177_00220345710500043601.pd

    Role of Visual Dysfunction in Postural Control in Children With Cerebral Palsy

    Get PDF
    Introduction: Deficient postural control is one of the key problems in cerebral palsy (CP). Little, however, is known about the specific nature of postural problems of children with CP, nor of the relation between abnormal posture and dysfunction of the visual system. Aim of the study: To provide additional information on the association of abnormalities in postural control and visual dysfunction of the anterior or posterior part of the visual system. Methods: Data resulting from ophthalmologic, orthoptic, neurological, neuro-radiological, and ethological investigations of more than 313 neurologically impaired children were retrospectively analyzed. Results: Abnormal postural control related to ocular and ocular motor disorders consisted of anomalous head control and subsequent abnormal head posture and torticollis. The abnormal postural control related to retrochiasmatical damage of the visual system consisted of a torticollis combined with adjustment of the upper part of the body, as if at the same time adapting to a combination of defects and optimizing residual visual functions. Conclusion: Visual dysfunctions play a distinct role in the postural control of children with CP
    • …
    corecore